Faiss
Facebook AI Similarity Search (FAISS) is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning.
You can find the FAISS documentation at this page.
This notebook shows how to use functionality related to the FAISS
vector database. It will show functionality specific to this integration. After going through, it may be useful to explore relevant use-case pages to learn how to use this vectorstore as part of a larger chain.
Setup
The integration lives in the langchain-community
package. We also need to install the faiss
package itself. We can install these with:
Note that you can also install faiss-gpu
if you want to use the GPU enabled version
pip install -qU langchain-community faiss-cpu
If you want to get best in-class automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
Initialization
- OpenAI
- HuggingFace
- Fake Embedding
pip install -qU langchain-openai
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model="sentence-transformers/all-mpnet-base-v2")
pip install -qU langchain-core
from langchain_core.embeddings import FakeEmbeddings
embeddings = FakeEmbeddings(size=4096)
from langchain_community.vectorstores import FAISS
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore
index = faiss.IndexFlatL2(len(embeddings.embed_query("hello world")))
vector_store = FAISS(
embedding_function=embeddings,
index=index,
docstore= InMemoryDocstore(),
index_to_docstore_id={}
)
Manage vector store
Add items to vector store
from langchain_core.documents import Document
from uuid import uuid4
document_1 = Document(
page_content="I had chocalate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"}
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"}
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"}
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"}
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"}
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"}
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"}
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"}
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"}
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"}
)
documents = [document_1, document_2, document_3, document_4, document_5, document_6, document_7, document_8, document_9, document_10]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents,ids=uuids)
['22f5ce99-cd6f-4e0c-8dab-664128307c72',
'dc3f061b-5f88-4fa1-a966-413550c51891',
'd33d890b-baad-47f7-b7c1-175f5f7b4e59',
'6e6c01d2-6020-4a7b-95da-ef43d43f01b5',
'e677223d-ad75-4c1a-bef6-b5912bd1de03',
'47e2a168-6462-4ed2-b1d9-d9edfd7391d6',
'1e4d66d6-e155-4891-9212-f7be97f36c6a',
'c0663096-e1a5-4665-b245-1c2e6c4fb653',
'8297474a-7f7c-4006-9865-398c1781b1bc',
'44e4be03-0a8d-4316-b3c4-f35f4bb2b532']
Delete items from vector store
vector_store.delete(ids=[uuids[-1]])
True
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Similarity search
Performing a simple similarity search with filtering on metadata can be done as follows:
results = vector_store.similarity_search("LangChain provides abstractions to make working with LLMs easy", k=2, filter={"source": "tweet"})
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]
Similarity search with score
You can also search with score:
results = vector_store.similarity_search_with_score("Will it be hot tomorrow?", k=1, filter={"source": "news"})
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=0.893688] The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees. [{'source': 'news'}]
Other search methods
There are a variety of other ways to search a FAISS vector store. For a complete list of those methods, please refer to the API Reference
Query by turning into retriever
You can also transform the vector store into a retriever for easier usage in your chains.
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1}
)
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
[Document(metadata={'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]
Chain usage
The code below shows how to use the vector store as a retriever in a simple RAG chain:
- OpenAI
- Anthropic
- Azure
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
prompt = hub.pull("rlm/rag-prompt")
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
rag_chain.invoke("What is LangGraph used for?")
'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of these types of applications.'
Saving and loading
You can also save and load a FAISS index. This is useful so you don't have to recreate it everytime you use it.
vector_store.save_local("faiss_index")
new_vector_store = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
docs = new_vector_store.similarity_search("qux")
docs[0]
Document(metadata={'source': 'tweet'}, page_content='Building an exciting new project with LangChain - come check it out!')
Merging
You can also merge two FAISS vectorstores
db1 = FAISS.from_texts(["foo"], embeddings)
db2 = FAISS.from_texts(["bar"], embeddings)
db1.docstore._dict
{'b752e805-350e-4cf5-ba54-0883d46a3a44': Document(page_content='foo')}
db2.docstore._dict
{'08192d92-746d-4cd1-b681-bdfba411f459': Document(page_content='bar')}
db1.merge_from(db2)
db1.docstore._dict
{'b752e805-350e-4cf5-ba54-0883d46a3a44': Document(page_content='foo'),
'08192d92-746d-4cd1-b681-bdfba411f459': Document(page_content='bar')}
API reference
For detailed documentation of all FAISS
vector store features and configurations head to the API reference: https://api.python.langchain.com/en/latest/vectorstores/langchain_community.vectorstores.faiss.FAISS.html