Skip to main content

MongoDB Atlas

This notebook covers how to MongoDB Atlas vector search in LangChain, using the langchain-mongodb package.

MongoDB Atlas is a fully-managed cloud database available in AWS, Azure, and GCP. It supports native Vector Search and full text search (BM25) on your MongoDB document data.

MongoDB Atlas Vector Search allows to store your embeddings in MongoDB documents, create a vector search index, and perform KNN search with an approximate nearest neighbor algorithm (Hierarchical Navigable Small Worlds). It uses the $vectorSearch MQL Stage.

Setup

*An Atlas cluster running MongoDB version 6.0.11, 7.0.2, or later (including RCs).

To use MongoDB Atlas, you must first deploy a cluster. We have a Forever-Free tier of clusters available. To get started head over to Atlas here: quick start.

You'll need to install langchain-mongodb and pymongo to use this integration, and we will also download langchain-openai for this notebook in order to use it for our embeddings.

pip install -qU langchain-mongodb pymongo langchain-openai

Credentials

For this notebook you will need to set an OPENAI_API_KEY and also find your MongoDB cluster URI.

For information on finding your cluster URI read through this guide.

import getpass
import os

MONGODB_ATLAS_CLUSTER_URI = getpass.getpass("MongoDB Atlas Cluster URI:")
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass("OpenAI API Key:")

If you want to get best in-class automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Initialization

pip install -qU langchain-openai
import getpass

os.environ["OPENAI_API_KEY"] = getpass.getpass()

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
from pymongo import MongoClient
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient

# initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)

DB_NAME = "langchain_test_db"
COLLECTION_NAME = "langchain_test_vectorstores"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain-test-index-vectorstores"

MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]

vector_store = MongoDBAtlasVectorSearch(
collection=MONGODB_COLLECTION,
embedding=embeddings,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
relevance_score_fn="cosine",
)

Manage vector store

Once you have created your vector store, we can interact with it by adding and deleting different items.

Add items to vector store

We can add items to our vector store by using the add_documents function.

from langchain_core.documents import Document
from uuid import uuid4

document_1 = Document(
page_content="I had chocalate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"}
)

document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"}
)

document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"}
)

document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"}
)

document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"}
)

document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"}
)

document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"}
)

document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"}
)

document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"}
)

document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"}
)

documents = [document_1, document_2, document_3, document_4, document_5, document_6, document_7, document_8, document_9, document_10]
uuids = [str(uuid4()) for _ in range(len(documents))]

vector_store.add_documents(documents=documents,ids=uuids)
API Reference:Document
['03ad81e8-32a0-46f0-b7d8-f5b977a6b52a',
'8396a68d-f4a3-4176-a581-a1a8c303eea4',
'e7d95150-67f6-499f-b611-84367c50fa60',
'8c31b84e-2636-48b6-8b99-9fccb47f7051',
'aa02e8a2-a811-446a-9785-8cea0faba7a9',
'19bd72ff-9766-4c3b-b1fd-195c732c562b',
'642d6f2f-3e34-4efa-a1ed-c4ba4ef0da8d',
'7614bb54-4eb5-4b3b-990c-00e35cb31f99',
'69e18c67-bf1b-43e5-8a6e-64fb3f240e52',
'30d599a7-4a1a-47a9-bbf8-6ed393e2e33c']

Delete items from vector store

vector_store.delete(ids=[uuids[-1]])
True

Query vector store

Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.

Query directly

Performing a simple similarity search can be done as follows:

results = vector_store.similarity_search("LangChain provides abstractions to make working with LLMs easy", k=2)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'_id': 'e7d95150-67f6-499f-b611-84367c50fa60', 'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'_id': '7614bb54-4eb5-4b3b-990c-00e35cb31f99', 'source': 'tweet'}]

Similarity search with score

You can also search with score:

results = vector_store.similarity_search_with_score("Will it be hot tomorrow?", k=1)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=0.784560] The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees. [{'_id': '8396a68d-f4a3-4176-a581-a1a8c303eea4', 'source': 'news'}]

Atlas Vector Search supports pre-filtering using MQL Operators for filtering. Below is an example index and query on the same data loaded above that allows you do metadata filtering on the "page" field. You can update your existing index with the filter defined and do pre-filtering with vector search.

{
"fields":[
{
"type": "vector",
"path": "embedding",
"numDimensions": 1536,
"similarity": "cosine"
},
{
"type": "filter",
"path": "source"
}
]
}

You can also update the index programmatically using the MongoDBAtlasVectorSearch.create_index method.

vectorstore.create_index(
dimensions=1536,
filters=[{"type":"filter", "path":"source"}],
update=True
)

And then you can run a query with filter as follows:

results = vector_store.similarity_search(query="foo",k=1,pre_filter={"source": {"$eq": "https://example.com"}})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")

Other search methods

There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for AstraDBVectorStore check out the API reference.

Query by turning into retriever

You can also transform the vector store into a retriever for easier usage in your chains.

Here is how to transform your vector store into a retriever and then invoke the retreiever with a simple query and filter.

retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": 1, "score_threshold": 0.2},
)
retriever.invoke("Stealing from the bank is a crime")
[Document(metadata={'_id': '8c31b84e-2636-48b6-8b99-9fccb47f7051', 'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]

Chain usage

The code below shows how to use the vector store as a retriever in a simple RAG chain:

pip install -qU langchain-openai
import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini")
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

prompt = hub.pull("rlm/rag-prompt")

def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)

rag_chain.invoke("What is LangGraph used for?")
'LangGraph is used for building stateful, agentic applications. It provides a framework that facilitates the development of such applications.'

Other Notes

  • More documentation can be found at LangChain-MongoDB site
  • This feature is Generally Available and ready for production deployments.
  • The langchain version 0.0.305 (release notes) introduces the support for $vectorSearch MQL stage, which is available with MongoDB Atlas 6.0.11 and 7.0.2. Users utilizing earlier versions of MongoDB Atlas need to pin their LangChain version to <=0.0.304

API reference

For detailed documentation of all MongoDBAtlasVectorSearch features and configurations head to the API reference: https://api.python.langchain.com/en/latest/mongodb_api_reference.html


Was this page helpful?


You can also leave detailed feedback on GitHub.